Arama
×

Oturum Aç

Use your Facebook account for quick registration

OR

Create a Shvoong account from scratch

Already a Member? Oturum Aç!
×

Oturum Aç

Sign in using your Facebook account

OR

Not a Member? Oturum Aç!
×

Oturum Aç

Use your Facebook account for quick registration

OR

Oturum Aç

Sign in using your Facebook account

Shvoong Ana Sayfa>Müspet Bilimler>Matematik>Bölünebilme Kuralları Örnekler

Bölünebilme Kuralları Örnekler

tarafından: merdem217     Yazar : mehmet
ª
 
ÖRNEKLER

Örnek 1:
Rakamları farklı 5 basamaklı 9452X sayısının 2 ile bölünebilmesi için, X değerlerinin toplamı kaç olmalıdır?
Çözüm:
9452X sayısının 2 ile bölünebilmesi için, X in alabileceği değerler
0, 2, 4, 6, 8
olmalıdır. Oysa, bu sayının rakamlarının farklı olması istendiğinden, X rakamı 2 ile 4 olamaz. Dolayısıyla, X in alabileceği değerler
0, 6, 8
dir. Bu değerlerin toplamı
0 + 6 + 8 = 14
olur.

Örnek 2:
5 basamaklı 1582A sayısının 3 ile bölünebilmesini sağlayan A değerlerinin toplamı kaçtır?
Çözüm:
Bir sayının 3 ile bölünebilmesi için, sayının rakamları toplamının 3 ün katları olması gerektiğinden,
1 + 5 + 8 + 2 + A = 3 . k
olmalıdır. Buradan,
16 + A = 3 . k
olur. Böylece, A
2, 5, 8
değerlerini alması gerekir. Dolayısıyla, bu değerlerin toplamı
2 + 5 + 8 = 15
olarak bulunur.

Örnek 3:
İki basamaklı mn sayısı 3 ile tam olarak bölünebilmektedir. Dört basamaklı 32mn sayısının 3 ile bölümünden kalan kaçtır?
Çözüm:
mn sayısı 3 ile tam olarak bölünebildiğine göre,
m + n = 3 . k
olması gerekir. O halde, 32mn sayısının 3 bölümünden kalan şöyle bulunur:
3 + 2 + m + n = 5 + ( m + n )
= 5 + 3 . k
= 3 + 2 + 3 . k
= 2 + 3 . k
Dolayısıyla, Kalan = 2 dir.

Örnek 4:
Dört basamaklı 152X sayısının 4 e bölümünden kalan 2 olduğuna göre, X in alabileceği değerler toplamı kaçtır?
Çözüm:
152X sayısının 4 e tam olarak bölünebilmesi için, sayının son iki basamağının yani 2X in, 4 ün katları olması gerekir. O halde, X,
0, 4, 8 ... (1)
değerlerini alırsa, 152X sayısı 4 e tam olarak bölünür. Kalanın 2 olması için, (1) nolu değerlere 2 ilave edilmelidir. Bu taktirde, X,
2, 6
değerlerini almalıdır. Dolayısıyla, bu değerlerin toplamı
2 + 6 = 8
olur.

Örnek 5:
666 + 5373
toplamının 4 e bölümünden kalan kaçtır?
Çözüm:
666 nın 4 e bölümünden kalan şöyle bulunur:
66 nın 4 e bölümünden kalana eşit olup, kalan 2 dir.
5373 ün 4 e bölümünden kalan şöyle bulunur:
73 ün 4 e bölümünden kalana eşit olup, kalan 1 dir.
Bu kalanlar toplanarak, toplamın kalanı
2 + 1 = 3
bulunur.

Örnek 6:
99999 . 23586 . 793423 . 458
çarpımının 5 e bölümünden kalan kaçtır?
Çözüm:
Bir sayının 5 e bölümünden kalanı bulmak için, birler basamağına bakılması gerekir ve birler basamağındaki rakamın 5 e bölümündeki kalana eşittir. Dolayısıyla,
99999 sayısının 5 e bölümünden kalan 2 dir.
23586 sayısının 5 e bölümünden kalan 1 dir.
793423 sayısının 5 e bölümünden kalan 3 tür.
458 sayısının 5 e bölümünden kalan 3 tür.
Bu kalanların çarpımı,
2 . 1 . 3 . 3 = 18
olur. 18 in 5 e bölümünden kalan ise, 3 tür.

Örnek 7:
Rakamları birbirinden farklı dört basamaklı 3m4n sayısı, 6 ile tam olarak bölündüğüne göre, m + n in en büyük değeri kaçtır?
Çözüm:
Bir sayının 6 ile tam olarak bölünebilmesi için, sayının hem 2 ile hem de 3 ile tam olarak bölünmesi gerekir.
3m4n sayısının 2 ye tam olarak bölünebilmesi için, n nin
0, 2, 4, 6, 8
olması gerekir. m + n nin en büyük olması için, n = 8 olmalıdır. Böylece, 3m4n sayısı,
3m48
olur. 3m48 sayısının, aynı zamanda, 3 e bölünmesi gerektiğinden,
3 + m + 4 + 8 = m + 3
olur ve böylece m, şu değerleri alabilir:
0, 3, 6, 9
m + n nin en büyük olması için, m = 9 alınmalıdır. Dolayısıyla, m = 9 ve n = 8 için, m + n nin en büyük değeri,
m + n = 9 + 8 = 17
olur.

Örnek 8:
Beş basamaklı m362m sayısı, 7 ile tam bölündüğüne göre, m nin alabileceği değerlerin toplamı kaçtır?
Çözüm:
(132) kuralını kullanmalıyız.
m 3 6 2 m = ( m.1 + 2.3 + 6.2 ) - ( 3.1 + m.3 ) = m + 6 + 12 - 3 - 3m = - 2m + 15
3 1 2 3 1
- +
- 2m + 15 = 7.k
Buradan m = 4 olur.

Örnek 9:
458028 sayısının 8 e bölümünden kalan kaçtır?
Çözüm:
Bir sayının 8 ile bölümünden kalanı bulmak için, sayının son üç basamağının 8 ile bölümünden kalanına bakılmalıdır. Dolayısıyla, 28 sayısının 8 ile bölümündeki kalanı bulmalıyız.
28 in 8 ile bölümünden kalan 4 tür.
O halde, 458028 sayısının 8 e bölümünden kalan, 4 tür.

Örnek 10:
10 basamaklı 4444444444 sayısının 9 ile bölümünden kalan kaçtır?
Çözüm:
Sayının rakamlarının toplamını alıp, 9 un katlarını atmalıyız.
Rakamların toplamı: 4 . 10 = 40 dır. Buradan, 4 + 0 = 4 bulunur.
O halde, 4444444444 sayısının 9 a bölümündün kalan 4 tür.

Örnek 11:
Dört basamaklı 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m kaç olmalıdır?
Çözüm:
Bir sayının 10 a bölümünden kalanı bulmak için, birler basamağına bakılmalıdır. Sayınnı birler basamağındaki rakam kaç ise, kalan odur.
Bu nedenle, 268m sayısının 10 ile bölümünden kalan 3 olduğuna göre, m = 3 olmalıdır.

Örnek 12:
Dokuz basamaklı 901288563 sayısının 11 ile bölümünden kalan kaçtır?
Çözüm:
9 0 1 2 8 8 5 6 3
+ - + - + - + - +
Kalan = ( 9 + 1 + 8 + 5 + 3 ) - ( 0 + 2 + 8 + 6 )
= 26 - 16
= 10
olarak bulunur.

Örnek 13:
Beş basamaklı 5m23n sayısının 30 ile tam olarak bölünebilmesi için, m ve n nin hangi değerleri alması gerekir?
Çözüm:
Bir sayının 30 ile tam olarak bölünebilmesi için, hem 10 ile hem de 3 ile tam olarak bölünmelidir.
Bir sayının 10 ile tam olarak bölünebilmesi için, sayının birler basamağının 0 olması gerekir. Dolayısıyla, n = 0 olmalıdır. Böylece, verilen sayı
5m230
olur.
Bir sayının 3 ile tam olarak bölünebilmesi, sayının rakamları toplamının 3 ün katları olması gerekir. Dolayısıyla,
5 + m + 2 + 3 + 0 = 3.k
m + 10 = 3.k
m = 2, 5, 8
olur. O halde, m = 2, 5, 8 ve n = 0 olmalıdır.
Yayın tarihi: 11 Ocak, 2008   
Lütfen bu özeti derecelendirin : 1 2 3 4 5
Tercüme Et Gönder Link Yazdır

New on Shvoong!

Top Websites Reviews

  1. 14. RAZİYE

    BU KONU

    YAAAA BİRAZ KISA OLSAYDI KEŞKE

    2 Değerlendirme 17 Kasım 2013 Pazar
  2. 13. ŞEVVAL

    DHFDH

    JRTHTRJHGBFDGGDSBHSFG HFHGFJWEFGEWFWEGJHFEW FHGDBFJSDFKFHGHGJFDS GHHFGFEJGKFJGFJGFKGKFDS HGFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFKÖGFJGFKWGLHW

    1 Değerlendirme 17 Kasım 2013 Pazar
  3. 12. büşra

    sorunlarrr

    yaaaa hep başka sitelerlen aynı başka soruda yok

    1 Değerlendirme 08 Ocak 2013 Salı
  4. 11. yasin

    bölüne bilme kuralları

    yaa daha fazla gerekiyor :( hepsi 280 tane olcak

    1 Değerlendirme 06 Ocak 2013 Pazar
  5. 10. abdüsamed

    Kolay

    Seda 6. sınıfım ama o kadar kolay ki bunlar üniversitede çıkmayabilir belki ama nedeni kolay olmasıdır. Eline Sağlık Hocam ..

    1 Değerlendirme 15 Aralık 2012 Cumartesi
  6. 9. aopo

    mat.

    selammım aleyküm aleyküme selam

    1 Değerlendirme 22 Kasım 2012 Perşembe
  7. 8. seda

    sedaa

    ilk 4 soruyu anLadım da sondaki soruLar üniversite sınavlarında bile sorulmaz neden bu kadar zor örnekler işlediğimz örneklerle hç alakası yoktu..!

    1 Değerlendirme 17 Kasım 2012 Cumartesi
  8. 7. melis

    ödev

    çok tşk re ederim ödevim sayenizde hazırladım =)

    2 Değerlendirme 16 Nisan 2012 Pazartesi
  9. 6. seda kaya

    pi sayısı

    tşk re ederim çok güzel bir ödev olmuş.......! =))))))))))

    2 Değerlendirme 16 Nisan 2012 Pazartesi
  10. 5. deniz

    bölünebilme kuralları

    tşk edrim size çok yardım etti

    3 Değerlendirme 09 Nisan 2012 Pazartesi
X

.